Preoperative 2D-echocardiographic assessment of pulmonary arterial pressure in subgroups of liver transplantation recipients

Jungchan Park1, Myung Soo Park2, Ji-Hye Kwon1, Ah Ran Oh1, Seung-Hwa Lee3, Gyu-Seong Choi4, Jong Man Kim4, Keoungah Kim5, and Gaab Soo Kim1

1Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 2Department of Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwaseong, 3Department of Medicine, Heart, Stroke, and Vascular Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 4Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 5Department of Anesthesiology, School of Dentistry, Dankook University, Cheonan, Korea

Background: The clinical efficacy of preoperative 2D-echocardiographic assessment of pulmonary arterial pressure (PAP) has not been evaluated fully in liver transplantation (LT) recipients.

Methods: From October 2010 to February 2017, a total of 344 LT recipients who underwent preoperative 2D-echocardiography and intraoperative right heart catheterization (RHC) was enrolled and stratified according to etiology, disease progression, and clinical setting. The correlation of right ventricular systolic pressure (RVSP) on preoperative 2D-echocardiography with mean and systolic PAP on intraoperative RHC was evaluated, and the predictive value of RVSP > 50 mmHg to identify mean PAP > 35 mmHg was estimated.

Results: In the overall population, significant but weak correlations were observed (R = 0.27; P < 0.001 for systolic PAP, R = 0.24; P < 0.001 for mean PAP). The positive and negative predictive values of RVSP > 50 mmHg identifying mean PAP > 35 mmHg were 37.5% and 49.9%, respectively. In the subgroup analyses, correlations were not significant in recipients of deceased donor type LT (R = 0.129; P = 0.224 for systolic PAP, R = 0.163; P = 0.126 for mean PAP) or in recipients with poorly controlled ascites (R = 0.215; P = 0.072 for systolic PAP, R = 0.21; P = 0.079 for mean PAP).

Conclusions: In LT recipients, the correlation between RVSP on preoperative 2D-echocardiography and PAP on intraoperative RHC was weak; thus, preoperative 2D-echocardiography might not be the optimal tool for predicting intraoperative PAP. In LT candidates at risk of pulmonary hypertension, RHC should be considered.

Keywords: Catheterization; Echocardiography; Hypertension; Liver transplantation; Pulmonary; Swan-ganz.
INTRODUCTION

Pulmonary hypertension (PH) is not uncommon in end-stage liver disease, and the presence of PH is of particular concern in liver transplantation (LT) [1,2]. The current diagnostic criteria for porto-pulmonary hypertension require hemodynamic measurements obtained via right heart catheterization (RHC): mean PAP (mPAP) > 25 mmHg, pulmonary vascular resistance > 3 Woods units, and pulmonary capillary wedge pressure < 15 mmHg [3]. Reportedly, the mortality of LT exponentially increased at the threshold of mean pulmonary artery pressure (PAP) over 35 mmHg [4]. Thus, RHC, the gold standard for evaluating pulmonary hemodynamics in high-risk candidates, has been justified despite the invasiveness of the procedure associated with fatal complications such as bleeding and arrhythmia [5].

To select patients at risk, the current guidelines recommend echocardiographic assessment for screening for all LT candidates [6]. 2D-Echocardiography is a non-invasive, widely available, and relatively inexpensive diagnostic method [7], and previous studies have demonstrated its clinical efficacy in LT candidates [8,9]. Because PH that responds well to preoperative treatment is indicated for LT [1], continuous monitoring of PAP is crucial in liver allocation as well as screening of PH [10,11]. 2D-Echocardiographic assessment has shown benefits in monitoring progression or improvement of PH [7], but reliability of preoperative 2D-echocardiography in predicting actual intraoperative PAP remains uncertain.

Our institution is a large-volume center with experience of more than 2,000 LT cases over 20 years. Preoperative 2D-echocardiography is included in the routine preoperative evaluation and is performed and interpreted by echocardiographers and cardiologists. All intraoperative parameters measured by direct cannulation are recorded in the institutional LT database by attending anesthesiologists. This study evaluated the correlation between right ventricular systolic pressure (RVSP) on preoperative 2D-echocardiography and PAP measured by intraoperative RHC and whether preoperatively high RVSP could predict intraoperative mPAP > 35 mmHg.

MATERIALS AND METHODS

Study population and data collection

The Institutional Review Board at our institution approved this study and waived the need for individual consent (no. 2018-12-095-001). The study was conducted according to the principles of the Declaration of Helsinki. Study data were derived from the institutional LT database and retrospectively analyzed. From October 2010 to February 2017, 415 adult LT recipients with intraoperative RHC were enrolled in the registry. Exclusion criteria were recipients undergoing multiple organ transplantations (n = 6) or without RVSP measurement on preoperative 2D-echocardiography (n = 65). Clinical, laboratory, and outcome data were collected by a trained coordinator using standardized case report protocols from institutional electric medical records. All recipients were analyzed anonymously.

Study endpoints

The primary endpoint was the correlation between RVSP on preoperative 2D-echocardiography and systolic PAP (sPAP) on intraoperative RHC according to demographic characteristics (sex and body mass index), disease severity (model for end-stage liver disease [MELD] score and presence of ascites), type of LT (living donor or deceased donor), and etiology of disease (cirrhotic or non-cirrhotic). The secondary endpoints were the correlations between RVSP on preoperative 2D-echocardiography and mean pulmonary arterial pressure (mPAP) on intraoperative RHC in the above subgroups.

The positive and negative predictive values of RVSP > 50 mmHg for identifying mPAP > 35 mmHg and sPAP > 50 mmHg were calculated [4,7]. Based on intraoperative RHC, recipients with porto-pulmonary hypertension, defined as mPAP > 25 mmHg, pulmonary vascular resistance >3 Woods units, and pulmonary capillary wedge pressure < 15 mmHg according to the current guideline [3], were identified, and the baseline characteristics and preoperative treatments in these recipients were reported.

Pulmonary pressure on 2D-echocardiography and RHC

Following institutional protocol, preoperative 2D-echocardiography was performed in every patient scheduled for LT using various models of commercially available equipment. The following formula was used to calculate RVSP with the assumption of no significant right ventricular outflow tract obstruction:

\[
RVSP = 4 \times (V)^2 + \text{assumed right atrial pressure};
\]
Anesthetic care

Anesthetic care was standardized according to institutional protocol. After applying monitoring devices (peripheral capillary oxygen saturation, five-lead electrocardiography, noninvasive arterial blood pressure), anesthetic induction was achieved with thiopental sodium and maintained with isoflurane. Remifentanil was infused to respond to hemodynamic changes. The respiratory rate was set to achieve normocapnea. Fluids and pressor drugs were infused to maintain mean arterial pressure 70 mmHg.

Statistical analysis

The mean pressures between 2D-echocardiography and RHC were compared using t-test and are presented as mean ± standard deviation (SD). The correlation was analyzed using Spearman’s correlation coefficient and presented as R and P values. Scatter plots and Bland-Altman plots for subgroups were generated. Statistical analyses were performed with IBM SPSS Statistics software Version 20.0 (IBM, USA). P values < 0.05 were considered statistically significant.

RESULTS

A total of 344 recipients was enrolled for analysis. The median age of recipients was 54 years (interquartile range, 49.2–60.0 years). The median duration between 2D-echocardiography and RHC was 20 days (interquartile range, 13.0–40.8 days). The mean value of RVSP on preoperative 2D-echocardiography was significantly higher than that of sPAP on intraoperative RHC (27.2 ± 7.1 vs. 22.0 ± 7.3; P value < 0.001). Similar results were observed in most subgroups (Table 1). Correlations of the entire population between RVSP on preoperative 2D-echocardiography and PAP on intraoperative RHC were significant but weak for both sPAP and mPAP (R = 0.27; P < 0.001 for sPAP, R = 0.24; P < 0.001 for mPAP) (Table 2). However, different results were found in some subgroup analyses. In recipients without ascites or with controlled ascites, RVSP on 2D-echocardiography correlated well with both sPAP and mPAP, whereas recipients with uncontrolled ascites showed nonsignificant results (R = 0.215; P = 0.072 for sPAP, R = 0.21; P = 0.079 for mPAP). The correlation also showed inconsistent significance according to type of LT, being significant in recipients of living donor LT but not in those of deceased donor LT (R = 0.226; P < 0.001 vs. R = 0.129; P = 0.224 for sPAP, R = 0.193; P = 0.002 vs. R = 0.163; P = 0.126 for mPAP). Analyses according to disease progression showed that the correlations were significant irrespective of MELD score (Table 2).

A scatter plot of the entire population is shown in Fig. 1. Scatter plots for separate analyses according to type of LT (Fig. 2) and degree of ascites (Fig. 3) are presented. In addition, Bland-Altman plots were generated. According to t-test and regression analysis, the bias between RVSP and sPAP (mean value of RVSP-sPAP) was 5.24 mmHg (SD ± 8.45), and the 95% limits of agreement were 21.80 and –11.32 mmHg (Fig. 4). For mPAP, the bias between RVSP and mPAP

| Table 1. Mean RVSP on 2D-Echocardiography and sPAP on RHC |
|-----------------|-----------------|-----------------|-----------------|
| Variable        | RVSP            | sPAP            | P value         |
| Overall recipients (n = 344) | 27.2 ± 7.1       | 22.0 ± 7.3      | < 0.001         |
| Male (n = 258)  | 26.9 ± 7.2       | 21.7 ± 7.4      | < 0.001         |
| Female (n = 86) | 28.2 ± 6.7       | 22.9 ± 6.8      | < 0.001         |
| BMI < 25 (n = 247) | 27.2 ± 7.5      | 21.7 ± 7.4      | < 0.001         |
| BMI ≥ 25 (n = 97) | 27.1 ± 6.1      | 22.7 ± 6.8      | < 0.001         |
| MELD < 25 (n = 247) | 27.0 ± 6.3     | 21.8 ± 7.1      | < 0.001         |
| MELD ≥ 25 (n = 97) | 27.7 ± 9.3      | 22.6 ± 7.9      | < 0.001         |
| No ascites (n = 162) | 26.1 ± 5.9      | 20.7 ± 6.0      | < 0.001         |
| Ascites (n = 182)  | 28.1 ± 8.0       | 22.9 ± 7.9      | < 0.001         |
| Controlled ascites (n = 111) | 28.8 ± 8.2      | 22.8 ± 8.6      | < 0.001         |
| Uncontrolled ascites (n = 71)  | 27.0 ± 7.5       | 23.5 ± 7.2      | < 0.001         |
| Living donor LT (n = 254)  | 26.2 ± 6.5       | 20.8 ± 6.2      | < 0.001         |
| Deceased donor LT (n = 90)  | 30.1 ± 7.9       | 25.3 ± 8.9      | < 0.001         |
| Cirrhotic disease (n = 281)  | 26.3 ± 6.4       | 20.6 ± 5.9      | < 0.001         |
| HBV related disease (n = 227) | 26.6 ± 6.6      | 20.7 ± 6.5      | < 0.001         |
| HCV related disease (n = 32)  | 27.4 ± 7.8       | 21.4 ± 6.0      | < 0.001         |
| Alcoholic disease (n = 50)  | 27.7 ± 7.7       | 24.9 ± 9.6      | 0.110           |
| Non-cirrhotic disease (n = 63)  | 31.2 ± 8.7       | 28.0 ± 9.4      | 0.046           |

Values are presented as mean ± SD. RVSP: right ventricular systolic pressure, sPAP: systolic pulmonary arterial pressure, RHC: right heart catheterization, BMI: body mass index, MELD: model for end-stage liver disease, LT: Liver transplantation, HBV: hepatitis B virus, HCV: hepatitis C virus.
(mean value of RVSP-mPAP) was 12.79 mmHg (SD ± 7.34), and the 95% limits of agreement were 27.17 and –1.59 mmHg (Fig. 5).

The positive and negative predictive values of RVSP > 50 mmHg on echocardiography for identifying mPAP > 35 mmHg were 37.5% and 49.9%, respectively, and 28.6% and 49.8% for sPAP > 50 mmHg (Table 3). According to intraoperative measurements from RHC, five recipients were diagnosed as porto-pulmonary hypertension. In contrast to the results from the other subgroups, preoperative RVSP was lower than sPAP in intraoperative RHC in these recipients (38.2 ± 16.5 vs. 40.6 ± 8.0).

**DISCUSSION**

In this study, we evaluated the correlation between RVSP on preoperative 2D-echocardiography and PAP on intraoperative RHC and found a significant but weak correlation in the overall population. In the Bland-Altman plots, the difference between RVSP and PAP tended to be more significant when RVSP or PAP was higher. The subgroup analyses demonstrated that the correlation was not significant in recipients with uncontrolled ascites or in recipients of deceased donor LT. The results of this study suggest that pulmonary pressure on preoperative 2D-echocardiography...
does not predict intraoperative state adequately, especially when PAP or RVSP is high or in LT recipients of deceased donor type or with uncontrolled ascites. Moreover, predictive values for identifying PH with high risk for LT were poor in the entire population and subgroup analysis. Although 2D-echocardiography is an effective modality in screening for porto-pulmonary hypertension in LT candidates, our results question whether preoperative 2D-echocardiography monitoring can reflect intraoperative pulmonary hemodynamics of LT recipients.

Survival after LT is highly dependent on cardiac function, and PAP is directly associated with clinical outcomes of LT [4,7,13]. A graded association was shown between mPAP and mortality in the subgroup of patients with high pulmonary vascular resistance, and sPAP was associated with increased risk of hospitalization for cardiac disease [14-16].
The use of RHC cannot always be justified as a screening tool due to invasiveness, but it is the only gold standard modality to confirm porto-pulmonary hypertension. Early studies demonstrated that echocardiography can be an effective tool for detecting PH in LT candidates [8,9], and these results have led to wide use of 2D-echocardiography as an initial screening method to determine the need for RHC by screening for cardiac abnormalities or PH. However, predicting intraoperative PAP based on preoperative echocardiographic results can be influenced by other perioperative factors. Therefore, we evaluated the correlation between RVSP on preoperative 2D-echocardiography and PAP on intraopera-

**Table 3.** Predictive Values of RVSP > 50 mmHg to Detect Pulmonary Arterial Hypertension on RHC

<table>
<thead>
<tr>
<th>Variable</th>
<th>RVSP &gt; 50 mmHg</th>
<th>mPAP &gt; 35 mmHg detection</th>
<th>sPAP &gt; 50 mmHg detection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>PPV</td>
<td>NPV</td>
</tr>
<tr>
<td>Overall recipients (n = 344)</td>
<td>5</td>
<td>3</td>
<td>37.5</td>
</tr>
<tr>
<td>Male (n = 258)</td>
<td>4</td>
<td>3</td>
<td>42.9</td>
</tr>
<tr>
<td>Female (n = 86)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BMI &lt; 25 (n = 247)</td>
<td>0</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>BMI ≥ 25 (n = 97)</td>
<td>5</td>
<td>2</td>
<td>28.6</td>
</tr>
<tr>
<td>MELD &lt; 25 (n = 247)</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MELD ≥ 25 (n = 97)</td>
<td>1</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>No ascites (n = 162)</td>
<td>1</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Ascites (n = 182)</td>
<td>4</td>
<td>2</td>
<td>33.3</td>
</tr>
<tr>
<td>Controlled ascites (n = 111)</td>
<td>3</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Uncontrolled ascites (n = 71)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Living donor LT (n = 254)</td>
<td>2</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>Deceased donor LT (n = 90)</td>
<td>3</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Cirrhotic disease (n = 281)</td>
<td>3</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>HBV related disease (n = 227)</td>
<td>2</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>HCV related disease (n = 32)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alcoholic disease (n = 50)</td>
<td>1</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Non-cirrhotic disease (n = 63)</td>
<td>2</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

RVSP: right ventricular systolic pressure, RHC: right heart catheterization, sPAP: systolic pulmonary arterial pressure, mPAP: mean pulmonary arterial pressure, PPV: Positive predictive value, NPV: Negative predictive value, BMI: body mass index, MELD: model for end-stage liver disease, LT: Liver transplantation, HBV: hepatitis B virus, HCV: hepatitis C virus.

**Fig. 4.** Bland-Altman plot of systolic right ventricular pressure (RVSP) on preoperative echocardiography to systolic pulmonary arterial pressure (sPAP).

**Fig. 5.** Bland-Altman plot of systolic right ventricular pressure (RVSP) on preoperative echocardiography to mean pulmonary arterial pressure (mPAP); the bias was 12.79 mmHg, and the 95% limits of agreement were 27.17 and –1.59 mmHg.
tive RHC in a large cohort of total LT recipients and its sub-

groups.

Although several indexes and methods have been adopt-
ed to increase accuracy and reproducibility [17], correlations
between RVSP on 2D-echocardiography and PAP on RHC
have been reported to be weak in the general population [7].
Methods to improve accuracy include measuring tricuspid
annular plane systolic excursion, two-dimensional strain,
tissue Doppler echocardiography, the speckle tracking
method, acceleration time across the pulmonic valve, the
pulmonary artery regurgitant jet method, and the tricuspid
regurgitant jet method [18]. The most commonly used
method is to measure the maximum velocity of the tricuspid
regurgitant jet, which was used in this study.

In this study, the correlation between preoperative RVSP
on 2D-echocardiography and intraoperative PAP on RHC
was significant but weak, and the following inherent limita-
tions might be related to this result. First, 2D-echocardiogra-
phy was performed in the preoperative period, while PAP
was measured intraoperatively by RHC. There is a difference
in physiologic status between pre- and intraoperative peri-
ods. Second, the echocardiography beam cannot always be
parallel to the tricuspid regurgitant jet when obtaining maxi-
mum velocity [19]. Third, distal obstruction such as right
ventricular outlet obstruction, pulmonic valve stenosis, or
supravalvular stenosis might be present [18]. Lastly, the con-
tinuous wave Doppler spectrum can be suboptimal or ab-
sent. In patients with limited echocardiographic view, con-
trast agent can be considered to enhance the velocity signal
[20,21]. Another possibility is related to the time gap from
2D-echocardiography to LT. Due to the retrospective nature
of this study, preoperative echocardiographic assessment
was not repeated in candidates with normal findings, and
this gap was inconsistent among study participants.

Unlike the overall population in which preoperative RVSP
far exceeded intraoperative sPAP on RHC, preoperative
RVSP slightly underestimated intraoperative sPAP in recipi-
ents diagnosed with porto-pulmonary hypertension by
RHC. This result corresponds well with previous studies in
that, while diagnostic value of 2D-echocardiography is pro-
ounced in patients with moderate to severe PH, a weak
correlation with pulmonary pressure was reported among
LT candidates overall [7–9]. Our predictive values for identi-
fying clinically significant PH are lower than those of one
previous study [9], owing to the following differences in clin-
cal setting. First, we evaluated the predictive value of preop-
erative RVSP for identifying intraoperative PH. Unlike a

comparison between simultaneous measurements, induc-
tion of general anesthesia before catheter insertion as well
as the time gap might have affected the results because an-
esthetics affect pulmonary hemodynamics [22]. Second, the
study used a larger cohort and enrolled results of 2D-echo-
cardiography performed in various clinical settings other
than echocardiographic laboratories. Echocardiographic
imaging is more difficult when related to position of the pa-

tient, lack of cooperation, tachypnea or artificial ventilation,
and other factors [23]. Inter- and intra-observer variability
of echocardiographic assessment can be pronounced in less
experienced hands [24]. The strength of this study is that the
results reflect the correlations of real-world practice in vari-
cious clinical settings of LT recipients and are presented ac-
cording to these subgroups.

In recipients with ascites, only the group with uncon-
trolled ascites showed a non-significant correlation. This re-
sult could be related to increased intra-abdominal pressure
that might have affected right atrial pressure by altering ve-
nous return [25]. Previous studies on the effect of increased
intra-abdominal pressure on the circulatory system have re-
ported inconsistent results. While initial studies assumed
that venous return would increase following intra-abdomi-
nal pressure, subsequent studies showed a decreased ve-
nous return [26]. To explain these contradictory results, a
hypothesis that vascular waterfall occurs in the inferior vena
cava at diaphragm level was proposed. The waterfall phe-
nomenon was demonstrated in an animal study and is pre-
sumed to interact with intra-abdominal pressure, inferior
vena cava pressure, and transmural closing pressure of the
inferior vena cava [27].

Although 2D-echocardiography can be clinically valuable
in screening PH in LT candidates, our findings suggest that
preoperative 2D-echocardiography might not be sufficient
for predicting intraoperative state. That is because some of
the clinical settings in this study are inevitable; moreover,
diagnostic criteria of porto-pulmonary hypertension require
direct measurements from RHC such as mPAP, pulmonary
vascular resistance, and pulmonary capillary wedge pres-
Sure. Thus, it is reasonable to consider intraoperative RHC
actively for recipients at risk. Also, selection of LT candidates
for preoperative RHC and measures to improve quality of
preoperative 2D-echocardiography is an important issue
that was not resolved by this study. The efficacy of intraoper-
avative echocardiography and the correlation with RHC during
LT procedures are beyond the scope of this study and re-
quire further randomized investigations.
Our study was limited by its retrospective design and potential selection bias. Different time intervals from preoperative 2D-echocardiography to surgery also might have caused variability. Sensitivity and specificity for detecting PH could not be analyzed because patients with marked elevation of PAP were allocated for transplantation only after successful treatment. Lastly, the association with clinical outcome was not analyzed in this study. Despite these limitations, this is the first study validating preoperative 2D-echocardiography for predicting intraoperative PAP in LT recipient subgroups.

In LT recipients, the correlations between RVSP on preoperative 2D-echocardiography and PAP on intraoperative RHC are significant but weak. Preoperative 2D-echocardiography might not be reliable in predicting intraoperative pulmonary hemodynamics, and it is reasonable to consider intraoperative RHC for recipients at risk of PH.

**CONFLICTS OF INTEREST**

No potential conflict of interest relevant to this article was reported.

**DATA AVAILABILITY STATEMENT**

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

**AUTHOR CONTRIBUTIONS**


**ORCID**

Jungchan Park, https://orcid.org/0000-0002-7794-3547
Myung Soo Park, https://orcid.org/0000-0001-7832-4513
Ji-Hye Kwon, https://orcid.org/0000-0002-8899-0699
Ah Ran Oh, https://orcid.org/0000-0002-8076-5104
Seung-Hwa Lee, https://orcid.org/0000-0001-5508-7519
Gyu-Seong Choi, https://orcid.org/0000-0003-2545-3105
Jong Man Kim, https://orcid.org/0000-0002-1903-8354
Keoungah Kim, https://orcid.org/0000-0002-4924-1046
Gaab Soo Kim, https://orcid.org/0000-0002-9383-2652

**REFERENCES**

9. Cotton CL, Gandhi S, Vaitkus PT, Massad MG, Benedetti E,


